WGIN and NUE

Nitrogen mobilisation in wheat

M J Hawkesford

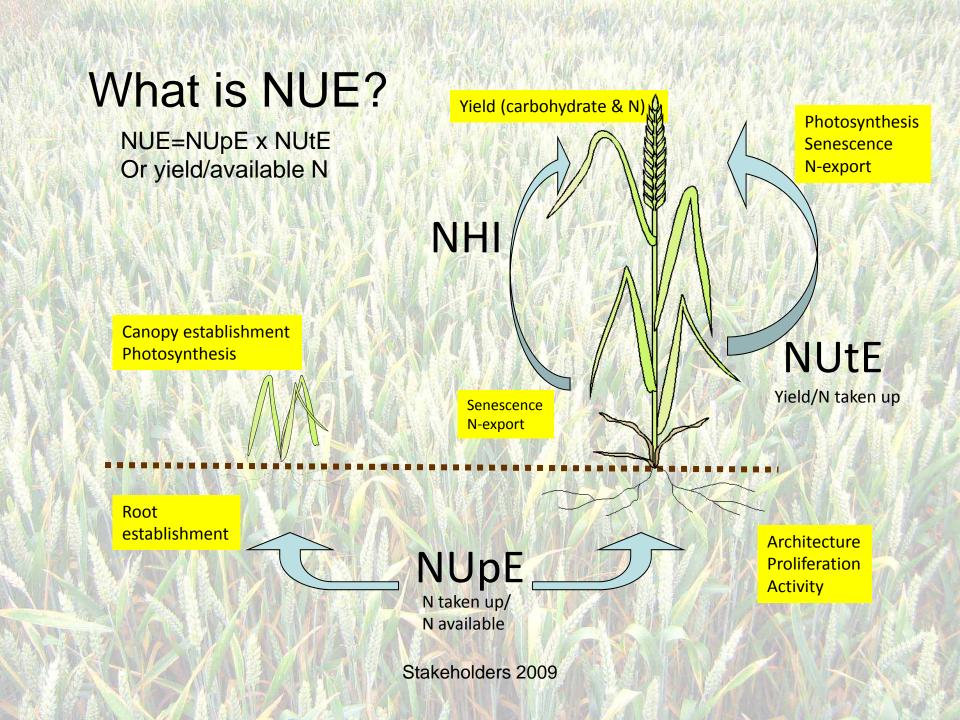
WGIN Stakeholder Meeting 25th November 2009

Why be concerned about N-efficiency?

Nitrogen fertilizer

Financial costs

Conventional farmers
Fertilizer producers
Organic growers
Millers
Bakers


efficiency

YIELD & QUALITY

Environmental costs

Government/legislation/NVZs
Public concerns
Carbon footprint

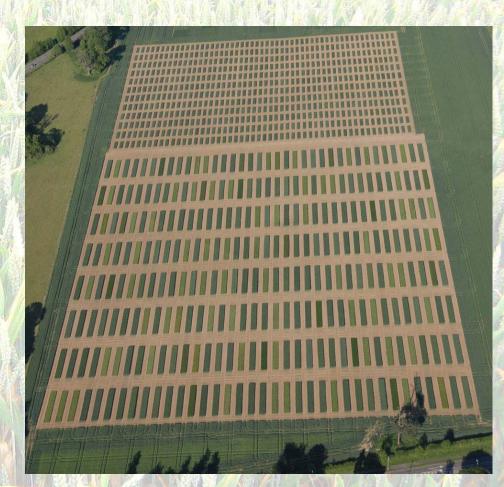
Stakeholders 2009

WGIN NUE objectives

- Quantify variation and dissect components of yield and NUE parameters
- 2. Examine variation in NUE in more 'exotic' germplasm
- 3. Use mapping populations to identify robust key QTLs for NUE
- 4. Examine variation in nitrogen uptake ability.
- 5. Determine whether functionality can be maintained at reduced grain protein
- 6. Examine physiology/biochemical processes contributing to NUE and assess expression of key genes (non WGIN funded)

BBC filming, 3rd August, 2009

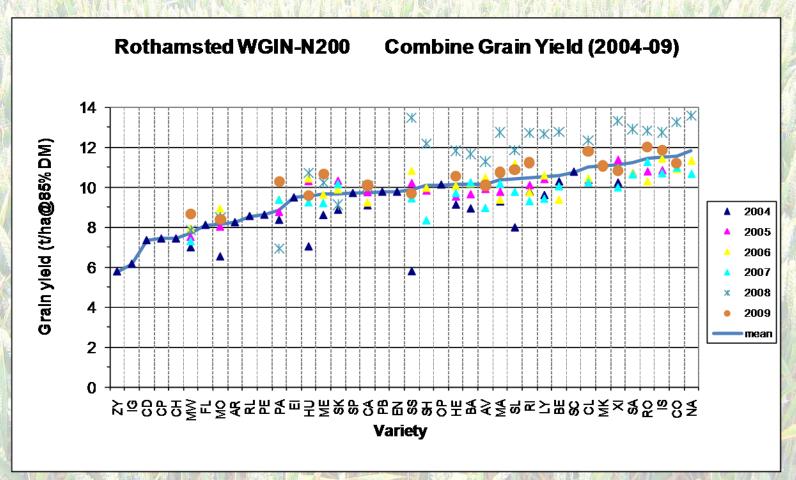
Approaches


- Wide germplasm screening + core set:
 Diversity Trial
- Use of mapping populations:Avalon x Cadenza
- 3. Yield, NUE
- Acquisition and root characteristics
- Canopy functioning after anthesis

Spring 2009

WGIN Diversity Trial summary (2004-2013)

- Choice of varieties (varied with core set identical) c. 25 y⁻¹
- N usually 0, 100, 200 and 350 kg/ha
- Randomised block design, 3 replicates, 18 x 3 m plot size with destructive sampling area
- Variety performance ranked on several parameters
- Basic dataset on 2004-07 trials submitted for publication


Variety Performance at 200 kg-N/ha (2004-08)

Variety	Code	Nabim	Years	Yield	%N	Uptake	Utilisation
Avalon Avalon	AV	1	5				
Flanders	FL	1	1				
Hereward	HE	1	5				
Hurley	HU	1	5				
Malacca	MA	1 1	5				
Mercia	ME	1	4				
Maris Widgeon	MW	1	5				
Shamrock	SH	1	40				
Solstice	SL	1	5				
Spark	SP	1	1				
Xi 19	XI	1	5 5				
Cadenza	CA	2	5				
Cordiale	co	2	3				
Einstein	EI	2	1				
Lynx	LY	2	5				
Rialto	RL	2	1				
Scorpion	SC	2	1				
Soissons	SS	2	5				
Beaver	BE	3	4				
Claire	CL	3	4				
Riband	RI	3	5				
Robigus	RO	3	4				
Istabraq	IS	4	4				
Napier	NA	4	3				
Savannah	SA	4 7	4				
Paragon (spring)	PA	1	5				
Chablis (spring)	CH	2	1				
Arche	AR	V.F.	1				
Batis	BA	G	5				
Caphorn	CP	FSV2	1				
Cappelle Desprez	CD	F	1				
Enorm	EN	G	1				
Isengrain	IG	A F	1				
Monopol	MO	G	5				
Opus	OP	G	1				
PBis	PB	G	1				
Petrus	PE	G	1				
Sokrates	SK	G	5				
Zyta	ZY	P	1				

Upper-Q Inter-Q Inter-Q Lower-Q Summary of variety performance (quartile rankings) based on 2004-07 WGIN datasets

Year and varietal variation in yield at 200 kg N/ha input

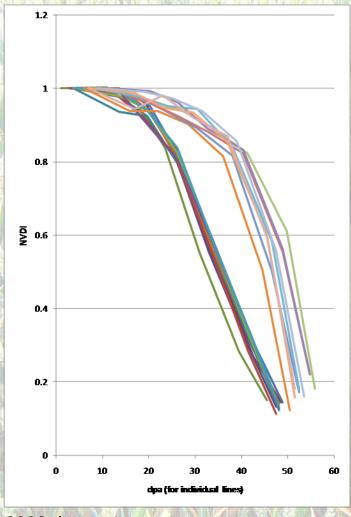
WGIN & NUE - what next?

- Additional germplasm
- Breakdown of yield components and partitioning of N
- Analysis of post anthesis canopy dynamics and function
- Assessment of uptake variability
- Examination of yield and quality (grain protein) interactions

WGIN mapping population (2007-2011)

- Avalon x Cadenza parent
- 204 doubled haploid lines
- Map data
- Triplicate, randomised plots, 2 x 10 m
- 100 and 200 kg N/ha

2007


Avalon x Cadenza

Traits

- Flowering time and height
- Yield (grain and straw) and TGW
- Nitrogen (grain and straw)
- NUtE, N uptake (final)
- Leaf N and SPAD (anthesis and 21 dpa)
- Leaf size
- Canopy longevity, reflectance, rate of senescence
- Early N uptake
- Gene expression

Canopy senescence assessed by NVDI

- •NVDI=(740nm-680nm)/((740nm+680nm)
- Variation across population
- Major difference is in timing of initiation of rapid increase in senescence
- Can add these parameters to map

2009 data set

Stakeholders 2009

Thanks

- Peter Barraclough
- RRes Farm staff
- Group and field team: Peter Buchner, Jonathan Howarth, Yongfan Wan, Mark Durenkamp, Saroj Parmar, Janina Jones, Dan Godfrey, Emmanuelle Cabannes, Adinda Derkx, Fumie Shinmachi + many summer students

